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Group Velocity and Phase Velocity in X-ray Crystal Optics 
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In a Laue type diffraction experiment in which a secondary ray is split from the primary one the 
propagation of energy takes place along the net planes on which reflection occurs, rather than along 
the normals of the incident or reflected waves. I t  is shown that  this result follows directly from the 
existence of a surface of dispersion if bundles of waves of small angular opening d~2 are substituted 
for the strictly plane component waves of the X-optical field. The direction of the group velocity is 
defined for each bundle and is shown to be directed along the normal to the Surface of Dispersion 
(or Index Surface in Light Optics) at  the point of this surface which represents one of the com- 
ponent plane-wave fields. The same result has been achieved by M. v. Laue in a discussion of 
G. Borrmann's experiments, and, recently, by N. Kato for electron and X-ray diffraction. The 
present treatment,  based on the concept of group-velocity, is more general and requires no detailed 
calculation of the field. 

A further result of 1~. Kato, regarding the propagation of a field of finite width, as cut out by a 
slit, is also given an interpretation by inspection. 

Introduction 

N. K a t o  (1958) has pointed out in the  preceding paper  
t h a t  the surface in Fourier  space which is usually called 
the  Surface of Dispersion in the dynamical  theory  of 
X- rays  fulfills the  same function as the  Index  Surface 
in ord inary  crystal  optics. A n y  point  A of the surface 
of dispersion is the  origin of wave vectors Kh leading 
f rom A to various points h (=  (hlh~h3)) of the recip- 
rocal lattice, whereby the origin 0 is a lways included. 
Fo r  monochromat ic  X- rays  all the magni tudes  IK~I 
are ve ry  near ly  k 0 = v/c, the wave constant  for a 
wave  of f requency v travell ing through empty  space, 
and this condition limits the number  of co-existent 
wave vectors. The difference between IKh] and ko 
gives rise to the  refract ive index /~h = [Khl/ko of 
each wave and also determines the relat ive ampli tudes 
of the  waves represented by the  point  A. These plane 
monochromat ic  waves form the simplest dynamical ly  
consistent X-optical  field in an  unbounded crystal .  
I n  the light-optical case k0 is so small t ha t  only the 
vector  from a point  A of the surface of dispersion to 
the  origin 0 of Fourier  space (and of the reciprocal 
lattice) comes close enough to length k 0 and the optical 
field therefore consists of a single wave instead of, 
say, n in the  X - r a y  case. While in the la t ter  case the 
surface of dispersion has 2n sheets, there are only 
two sheets in the case of light. A line d rawn into 0 
has  two intersections with the surface in the case of 
l ight and  gives rise to two vectors K, K'  of different 
lengths and to two values of the  refract ive index for 
waves having the direction of the line as wave-normal .  
For  this reason the two-sheet surface is called the 
Index  Surface. I t s  main  use in crystal  optics is for the  
construction of the refracted rays,  given the direction 
of incidence on a plane surface. This is a direct genera- 

lization of Snell's construction giving the same resul t  
for an isotropic medium. 

:N. Ka to  (1952) has studied for electron diffraction 
wha t  happens  to an incident wave which is cut out  
from an unbounded wavefront  by  a slit or other  form 
of diaphragm. He has hereby reached the conclusion 
t h a t  in the  case of a field consisting of two coupled 
plane waves the s t ream of particles or the energy 
travels  in a direction which differs from those of the  
two wave vectors and is t ha t  of the normal  to the  
surface of dispersion. This result  is closely related to 
the demonst ra t ion  by Bor rmann  (1950) t h a t  in the  
case of the Bor rmann  effect the rays  emerge from the 
underside of a crystal  as if they  had  t raversed  its 
thickness along the reflecting net  planes. M . v . L a u e  
(1952) was the first to explain this on the basis of the  
dynamical  theory  including absorption,  and others 
arr ived a t  the  same conclusion, including Kato .  

All these papers  are based on ra ther  detailed and  
complicated calculations. Bu t  the basic fact,  leading 
to their main result, can be obtained in a very  simple 
w a y - - a n d  this is the  justification of this note. I t  is 
merely a m a t t e r  of distinguishing between group 
velocity and pha~e velocity. 

Two methods  of studying the propagation of rays 
(energy) 

The propagat ion of energy in an optical field m a y  be 
obtained by two different procedures which can be 
sho~n generally to lead to the same result. 

(i) The first, which has been followed in the papers  
referred to above, is to calculate Poynt ing ' s  vector  of 
energy flux. Even  in the  simple case of considering a 
field consisting of only two plane-wave components  
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the Poynting vector is quite complicated. I t  has been 
plotted a long time ago by Eichenwald (1912) and 
these diagrams are not only very instructive for the 
case of the reflection of light from a plane surface, 
for which they were drawn, but they are also applic- 
able to the case of X-ray reflection with only slight 
modifications. The instantaneous picture of the tubes 
of energy flow is entirely different from what would be 
naively expected to indicate energy incident in one 
direction and reflected in another. Such a simple result 
can only be obtained by a radical process of space- 
and time-averaging which obliterates most of the 
details presented in the instantaneous diagram. I t  is 
precisely such averaging that  is applied in the above 
papers. The discussion of a monochromatic optical 
field consisting of plane waves is sufficient for obtain- 
ing the results. 

(ii) The second procedure for discussing the propaga- 
tion of energy in an optical field is that  of considering 
the displacement of a wave-packet. This was first done 
by Lord Rayleigh for strictly plane waves which are 
not monochromatic. Such waves are represented by 
a Fourier integral in frequency space, such as 

l A(v) exp [ - j ( v t - k z ) ]dv ,  (j = 2~i). (1) U(X, t) 

If A (v) is large only within a small frequency range 
the phases of the component waves, which are con- 
tained in the complex amplitudes A(v), may, at a 
certain time t o and place x 0 be largely compensated or 
complemented by the exponential, so that  an especially 
large value of u(x o, to) results. We can follow the course 
of this large value--ignoring an uninteresting phase 
factor--by making the change of phase of the inte- 
grand the same throughout the interval of integration 
when changing t o, x o by At, Ax: 

(d/dv)(vAt-kAx)  = 0 or Ax/At  = dv/dk. (2) 

Clearly the energy which is contained in this large field 
value will propagate with the velocity prescribed by 
this condition, namely with phase velocity q = v/k 
if the relation between v and k is linear (no dispersion), 
and with group velocity g = dv/dk in the case of a 
non-linear relation (dispersion). 

In a dispersive medium the wave-packet represented 
by (1) travels, like all its component waves, in the 
x-direction, but stays together only for a limited 
length and time because of the approximative cha- 
racter of the condition (2). 

S u b s t i t u t i o n  of wave bundles  for plane waves 

The usual method of considering monochromatic 
plane waves as the elementary form of field in optics 
leads to difficulties as soon as energy considerations 
are the primary aim. This is well known in the theory 
of Black Body Radiation where the elements con- 
sidered are bundles of plane waves of angular opening 
d ~  and of frequency interval dr. For the discussion 

of the propagation of fields, where linear superposition 
holds, the plane monochromatic wave is convenient 
and implies no restriction, since the energetically 
move significant fields can be built up from plane 
monochromatic waves by Fourier's theorem. Where 
the speed of energy transport is important--as in 
discussing the measm'ements of the velocity of fight 
- - the  use of a frequency interval is imperative, because 
only in that  way can a recognizable wave-packet or 
signal be built up. On the other hand the discussion 
of the geometrical path of energy in X-ray, or of 
charge in electron diffraction only requires the con- 
sideration of an elementary field having an angular 
opening. Polychromatism would need to be introduced 
only if the velocity of propagation were actually 
measured. This has so far not been attempted, though 
it seems feasible for electron and neutron diffraction 
by the use of a chopper. 
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Fig. 1. Part of the surface of dispersion S with points A 0 
and A, each representing an optical field consisting of plane 
waves with wave-vectors ending in the (distant) lattice 
points O, h, h' in Fourier space. 

Let S in Fig. 1 be part of the surface of dispersion 
for X-rays and let the vectors 

AoO= K 1, A o h =  K,~, A o h ' =  Kh', . . .  

be the wave vectors of the plane monochromatic 
waves forming an elementary field in the dynamical 
theory. To the scale used for S, these vectors would 
have to be about a mile long. The field, including the 
relative amplitudes and phases of the plane waves is 
fully represented by the point A 0 and the position of 
A 0 on S guarantees the dynamical consistency of the 
field. 

Next shift A o to A by a vector s, lying in S. A again 
represents a consistent field, whose wave vectors are 
( - s+K1) ,  ( - s + K h ) ,  . . .  etc. The amplitude ratios of 
the plane waves of this field differ from those of the 
previous one, and each field can, of course, be given 
an arbitrary overall amplitude and phase. 

By varying the position of A throughout a small 
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area of S, each of the original plane waves of the field 
A 0 will be replaced by a bundle of plane waves with 
wave-vectors varying within certain solid angles. The 
field in--approximately--the direction Ka is then 
described by 

uh(x, t) = l Bh(s) exp [--j(vt--(Kh--s) • x)]d~s, 

where/~a(s) is the amplitude of the wave associated 
with the direction Kh and the shift s. dPs is the element 
of area of S. The entire optical field is obtained by 
summation over h (= 0, h, h', . . . ) .  

The above expression can be interpreted as a wave 
travelling in the direction of Ka and having a slowly 
varying amplitude: 

uh(x, t) = exp [ - j (v t -K~ .x)] I Bh(s)exp [ - j s  .x] d~s. 

The dependence of the amplitude integral on x contains 
the local fluctuations of the field strength. The places 
where the field builds up to a large value depend on 
the amplitude and phase distribution assumed for the 
various points A. Irrespective of this we see, however, 
that  in order to retain the same value of the amplitude 
we have to shift x so that  the scalar product s .  x 
is not changed. Since s lies in the surface of dispersion, 
x has to be shifted parallel to the normal of the 
surface of dispersion at the point A 0. Any signal we 
implant on the wave-front therefore travels in the 
direction of this normal. 

I t  will be seen that  this holds for each one of the 
directions Ka. The place x where e.g. a field larger 
than average is built up, will vary from one bundle of 
waves to the other, since it depends on the Ba values. 
But for all waves the direction of energy flow is along 
the same normal to the surface of dispersion. Owing 
to the curvature of the surface of dispersion a signal 
will gradually change as it progresses. Its range is the 
shorter the greater the curvature of the surface of 
dispersion is at the central point A 0 of Fig. 1. 

The same arguments can be applied to the Index 
Surface in the light-optical case: the ray direction 
associated with a direction of the wave-normal is 
found as the normal of the tangent plane of the index 
surface at the point where it is intersected by the 
wave-normal. 

Applications 

1) In the case of a simple ]~ragg reflection of order h 
of a plane-polarized ray the surface of dispersion has 
the well known shape of a hyperbolic cylinder shown 
in cross section in Fig. 2. The asymptotic lines are 

- -> 

normal to the directions AO and Ah. The normal to 
the surface of dispersion thus always lies between 
these directions. If n indicates the normal of a plane 
parallel crystal plate the relation between the fields 
outside and inside the crystal requires the use of two 
elementary consistent fields, represented by points A 
and A' on the two branches of the hyperbola so that  

d ~ I 
h 

Fig. 2. Surface of dispersion for the case of one diffracted ray, 
shown simultaneously with the normal direction n of a 
crystal slab. 

A'A is parallel to n. The direction of energy flux of 
field A shown in the figure lies close to the direction 

of the primary beam AO, that  of field A' close to Ah, 
the direction of the diffracted beam. The position 
shown is towards one end of the range of reflection 
and the diffracted beam is weak; energy moves nearly 
in the direction of the primary beam. If the pair of 
points A, A' is shifted to the right, (corresponding to 
an increase of the glancing angle of the incident beam 
on the reflecting net planes), interaction between 
primary and diffracted beam increases and when A, A' 
lie near the vertices of the hyperbola the direction of 
energy flow is in both fields nearly along the re- 
flecting planes (strictly so in the case of symmetrical 
reflection). 

2) A beautiful result of N. Kate's (1952) study of 
the field generated by an incident wave of finite 
lateral extension (limitation by slit) shows that large 
values of the field within the crystal occur only in that  
region of the crystal which can be reached from the 
entrance port by progressing along the direction 
normal to the surface of dispersion. :Fig. 3 shows this 
for symmetrical reflection. This result is understand- 
able not only in terms of energy propagation, but also 
in terms of fields. For as soon as one of the wave- 
fronts gets out of the central region (vertically shaded), 
it is without its coupled companion wave; it is there- 
fore reflected unbalanced into the other direction. 
Thus every element of wave-front exceeding the central 
region swerves round to head for it again. The inter- 
action between the waves is thus prolonged against 
what it would seem according to a crude geometrical 
construction shown in Fig. 3 by the doubly shaded 
region. This discovery resolves the riddle why it is 
permissible to apply the formulae of the dynamical 
theory when using a narrow slit and a thick crystal, 
for instance in calculating the Borrmann effect, or in 
spectroscopy. 
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Fig. 3. Incidence of a ray limited sidewise and giving rise to 
symmetric reflection. The region of interaction is shaded 
vertically. 

3) Borrmann effect. In the case of a crystal with 
absorbing atoms the optical fields represented by the 
points A and A' of Fig. 2 are differently affected by 
absorption. To understand this we recall that  the 
formation of the field amplitude of each of the con- 
stituent plane waves is regulated by a 'resonance 
factor' 2 2 --1 (Kh--]C0) , where Kh is the wave-vector of the 
wave (and of the corresponding dipole phase of the 
atomic scatterers), and ]c0 is the wave constant for 
propagation in empty space. If the 'Laue-point' 
is defined as the point in the plane of Fig. 2 which 
has exactly the distance ]c o from O and from h, then 
one branch of the hyperbola will pass closer to the 
Laue point than the other. In the simple case of a 
lattice of non absorbing point atoms, and plane- 
polarized X-rays, one branch of the hyperbola passes 
through the Laue-point. For the other polarization, 
or when there is a structure factor . 1 this branch 
only approaches it closely. If the resonance factor is 
very large, even a very small dipole amplitude gives 
rise to a very large field amplitude. Or: the field 
amplitude required to balance the amplitude of an 

incident wave is obtained with less dipole amplitude 
the nearer the point A (or A') of Fig. 2 lies to the 
Laue-point. In the limit of A coinciding with the Laue- 
point no dipole amplitude at all is required to obtain 
a finite field. The crystal in that  case is optically 
empty; both waves have wave vectors of length k 0 
and travel with phase velocity c. An equivalent state- 
ment is in this case that  each dipole lies at a node of 
the wavefield of electric vectors. For were it not so, 
the ensuing vibration of the dipoles would create an 
infinitely strong wave. 

If we admit dissipation of energy by the dipoles, 
this is proportional to their amplitude. On that  part 
of the hyperbola which passes close to the Laue- 
point the efficiency of the dipoles for field production 
is great, and their amplitude remains small; there is 
thus only little energy dissipation, and this branch of 
the hyperbola leads to fields with only slight absorp- 
tion. In (hypothetical) cases when the representative 
point A coincides with the Laue-point itself, absorp- 
tion in the crystal is zero, no matter how strong it may 
be for the individual dipole or atom. 

In passing through a thick crystal slab only the 
field with the smallest absorption will survive. There- 
fore in the Borrmann experiment only the fields repre- 
sented by a small region on that  branch of the sur- 
face of dispersion which is nearest to the Laue-point 
are observed. The direction of energy flow for these 
fields is clearly very nearly along the reflecting net 
planes. 

4) Other types of waves. The relation between wave- 
normal and ray has been shown to have a purely 
kinematical origin. The direction of the ray is always 
along the normal of the wave-vector surface. This 
holds in particular for long acoustic and for ultrasonic 
waves in crystals and should be observable in the 
latter case. 

The author sincerely thanks Dr N. Kate for stimu- 
lating discussions. 
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